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ABSTRACT

Recent years have witnessed more improvement to the
SINDA/FLUINT thermohydraulic analyzer than at any other
time in its long history. These improvements have included
not only expansions in analytic power, but also the addi-
tions of high-level modules that offer revolutions in thermal/
fluid engineering itself.

One such high-level module, “Reliability Engineering,” is
described in this paper. Reliability Engineering means con-
sidering tolerances in design parameters, uncertainties in
environments, uncertainties in application (e.g. usage sce-
narios), and variations in manufacturing as the stochastic
phenomena that they are. Using this approach, the proba-
bility that a design will achieve its required performance
(i.e., the reliability) is calculated, providing an assessment
of risk or confidence in the design, and quantifying the
amount of over- or under-design present.

The design to be evaluated for reliability will likely have
been produced using traditional methods. Possibly, the
design was generated using the Solver optimizer, another
high-level module available in SINDA/FLUINT. Using
design optimization, the user quantifies the goals that make
one design better than another (mass, efficiency, etc.), and
specifies the thresholds or requirements which render a
given design viable or useless (exceeding a performance
limit, etc.). SINDA/FLUINT then automatically searches for
an optimal design.

Robust Design means factoring reliability into the develop-
ment of the design itself: designing for a target reliability
and thereby avoiding either costly over-design or danger-
ous under-design in the first place. Such an approach elim-
inates a deterministic stack-up of tolerances, worst-case
scenarios, safety factors, and margins that have been the
traditional approaches for treating uncertainties.

In any real system or product, heat transfer and fluid flow
play a limited role: there are many other aspects to a suc-
cessful design than the realm of thermal/fluids that is
encompassed by SINDA/FLUINT. Therefore, this paper

concludes with brief descriptions of methods for performing
interdisciplinary design tasks.

INTRODUCTION: THE NEED FOR A NEW METHOD

Overdesign is common and expensive. In large scale
projects, each discipline (thermal, structural, power, etc.)
communicates worst-case requirements to other disciplines
rather than attempting to couple the design analyses. This
leads to designs that are heavier and more costly than they
need to be, and in some cases does not even result in a
safer or more reliable design.

For example, it is common for power specialists to require
that nickel-hydrogen batteries never exceed 15°C. This
creates a serious thermal control challenge, requiring addi-
tional structural mass, technology risk, and, ironically,
heater power. In fact, nickel-hydrogen batteries do not fail
at 15°C, they simply become less reliable and more likely
to fail the longer they operate at elevated temperatures.
Occasional exposure temperatures up to as high as 30°C
are tolerable but undesirable, yet total avoidance of any
temperature greater than 15°C during any mission phase
becomes the task of the thermal control specialist. The
thermal control specialist might even resort to fancier and
therefore more risky thermal control options to achieve this
requirement, resulting in a less reliable overall design than
if temperature excursions had been better tolerated in the
battery design requirements! Examples of such overdesign
abound.

Even within one discipline, overdesign exists due to stack-
up of margins and worst-case scenarios until the design
case is unrealistic and will likely never occur. A worst-case
(unlikely) spacecraft attitude is combined with end-of-life
expected degradations of optical coatings, estimations of
worst-case electronic dissipations, and predictions of
worst-case conductive interface performance, etc. Addi-
tional margin is then added to cover uncertainties in ther-
mal modeling, environment, and component sizing (11°C
prediction margin plus either 10°C margin from qualification
on passive designs or 25% control authority on active
designs, per MIL-STD 1540c). Only when meeting an
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extreme stack-up of margins and uncertainties becomes
impossible does a renegotiation of adequate margin begin,
and such renegotiations are seldom based on any mathe-
matical rigor or true knowledge of the underlying risk.

In the aerospace industry, which is heavily influenced by
understandably cautious military standards, such overde-
sign compensates for unknowns and unforeseen problems.
Success in such a design environment is a necessity, and
cost is a secondary consideration.

In commercial satellites, on the other hand, cost is a pri-
mary consideration. An overall satellite reliability of 99%
may be desired, but if significant savings result from a
reduced reliability of 98%, the latter option will be seriously
considered. For example, it is common to apply a 5°C
uncertainty to thermal analysis predictions in a commercial
environment versus an 11°C uncertainty dictated by MIL
STD 1540c. “Safer” is also much more costly.

NASA’s “faster, better, cheaper” campaign in many ways
represents a shift from a military perspective to a commer-
cial one: additional risk may be intelligently traded against
reduced mission cost.

Statistical variations and uncertainties are intrinsic to ther-
mal/fluid designs. They occur in the form of:

1. Dimensional tolerances and property or performance
uncertainties. Examples: interference fits, epoxy bond
line thicknesses, as-built insulation performance,
degradation of optical coatings, conductance across
interfaces, convection coefficients, two-phase pressure
drops.

2. Boundary conditions. Examples: weather, orbital
environments, solar constants.

3. Requirements and design margin. Examples: battery
dissipation levels, equipment failure (temperature
control) limits, heat pipe excess capacity, heater margin.

Uncertainties abound in thermal design, and performance
specifications (design requirements) are usually negotia-
ble, meaning that they can be violated occasionally or
under certain circumstances. As an alternative to stacking
up worst-case margins, uncertainties, the engineer could
combine these factors statistically to yield information
about the degree of confidence (“reliability”) in a particular
point design. In other words, the engineer could generate
not just a single performance predictions but also a distri-
bution of performance predictions with associated probabil-
ities of occurrence, as shown graphically in Figure 1.

Figure 1: Avoiding Overdesign by Combining Uncertainties and Meeting Requirements Statistically

Current Reliability Engineering

99.7% ReliabilityMargin Stack-up
Reliability Unknown
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Consider an example. During the design of the space sta-
tion single-phase ammonia coolant loop, the question
arose of compliance with requirements given the uncer-
tainty in the manufacture of flow control orifices. In other
words, the baseline design included specific orifice sizes as
needed to achieve a balance of flow rates between parallel
legs such that no single payload would have less than the
required flow rate (and hence be at risk of overheating).
Even slight changes in the orifice dimension could result in
uneven flow distributions, such that a worst-case stack-up
of orifice sizes would definitely cause a lower or upper tem-
perature control limit to be exceeded. Recognizing that
such a problem should not be treated using a worst-case
but rather a probability distribution, the confidence in the
final design was determined quantitatively using statistical
combinations of various orifice sizes. Unfortunately, since
an older version of SINDA/FLUINT was employed which
had no such statistical design features, considerable work
was expended to perform the analysis.

Another space station example is the “design-to-freeze”
radiator. Thawing ammonia ice can rupture fluid lines, and
hence high strength materials and other design measures
were used to overcome the problem. The number of
expected fatigue cycles had to be treated statistically com-
bining estimates of loads and environments over the life of
the station. Also, the worst case design point for the thaw
stress resulted from a stack-up of various uncertainties in
radiator performance, environmental heating rates, etc.
Because a worst-case stack-up resulted in an unrealisti-
cally harsh design case with no potential design solution,
development and negotiation of a reasonable design case
had to be performed to provide adequate confidence in the
resulting design. The resulting design case was also used
as the basis for the validation test program.

Although only two examples are provided above, opportu-
nities for treating limits not as fixed “goal posts” but as
probabilistic distributions abound in most engineering prob-
lems. Engineers are simply not accustomed to dealing with
design problems in this manner in part because of training
and in part because of lack of tools.

INTRODUCTION: SINDA/FLUINT

SINDA/FLUINT (Ref 1) is the NASA-standard heat transfer
and fluid flow analyzer for thermal control systems.
Because of its general formulation, it is also used in other
aerospace specialties such as environmental control
(ECLSS) and liquid propulsion, and in terrestrial industries
such as electronics packaging, automotive, refrigeration,
and power generation.

SINDA/FLUINT is used to design and simulate thermal/fluid
systems that can be represented in networks correspond-
ing to finite difference, finite element, and/or lumped
parameter equations. In addition to conduction, convection,
and radiation heat transfer, the program can model steady
or unsteady single- and two-phase flow networks, including
nonreacting mixtures and nonequilibrium phenomena.

SINDA

SINDA uses a thermal network approach, breaking a prob-
lem down into points at which energy is conserved (nodes),
and into the paths (conductors) through which these points
exchange energy via radiation and conduction. While often
applied as a lumped-parameter modeling tool, the program
can also be used to solve the finite difference (FDM) or
finite element (FEM) equations for conduction in appropri-
ately meshed shells or solids. One can employ finite differ-
ence, finite element, and arbitrary (lumped parameter)
nodes all within the same model.

An important improvement over ancestral versions of
SINDA is the inclusion of submodels, which enable ana-
lysts to subdivide a large network of nodes and conductors
into collections of subnetworks consisting of nodes, con-
ductors, or both. Submodels represent a convenient means
of combining separately developed models, each with its
own control variables, customization logic, solution
method, and perhaps conflicting node and conductor num-
bering schemes. More often, they are simply used to
improve the organization and legibility of the model, or to
perform high-level simulation manipulations such as
dynamically swapping sets of boundary conditions, evalu-
ating alternate designs or components, or simulating vari-
able configurations.

Solutions may be performed in single- or double-precision
without any model or logic changes. Also, either iterative or
simultaneous (optimally reordered sparse matrix) solutions
may be used in steady-state or transient analyses. SINDA/
FLUINT provides a powerful means for creating highly cus-
tomized solution schemes by permitting the user to vary the
underlying methods on a submodel-by-submodel basis.

FLUINT

To answer the need to model two-phase fluid systems and
to replace the cumbersome and limited “one-way conduc-
tor” methods employed by ancestral versions of SINDA for
fluid flow simulation, FLUINT development was initiated by
NASA in the 1980’s as a major expansion of SINDA. All
major development has been completed, providing
unmatched thermohydraulic analysis capability. Thermal
and fluid models may be used alone or together to solve
conjugate heat transfer problems as typically found in ther-
mal control, propulsion, and energy systems.

FLUINT introduced a new type of submodel composed of
network elements, lumps and paths, which are analogous
to traditional thermal nodes and conductors, but which are
much more suited to fluid system modeling. Unlike thermal
networks, fluid networks are able to simultaneously con-
serve mass and momentum as well as energy.

Lumps are subdivided into tanks (control volumes), junc-
tions (volumeless conservation points, instantaneous con-
trol volumes), and plena (boundary states). Paths are
subdivided into tubes (inertial ducts), or connectors (instan-
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taneous flow passages including short ducts [STUBE con-
nectors], valves, etc.).

In addition to lumps and paths, there are three additional
fluid network elements: ties, fties, and ifaces. Ties repre-
sent heat transfer between the fluid and the wall (i.e.,
between FLUINT and SINDA). Fties or “fluid ties” represent
heat transfer within the fluid itself. Ifaces or “interface ele-
ments” represent moving boundaries between adjacent
control volumes.

Paralleling SINDA while at the same time extending the
SINDA design philosophy, FLUINT models can be con-
structed that employ fully transient thermohydraulic solu-
tions (using tanks and tubes), or that perform pseudo-
steady transient solutions (neglecting perhaps inertial
effects and other mass and energy storage terms using
junctions and STUBE connectors), or that employ both
techniques at once. In other words, the engineer has the
ability to approximate or idealize where possible, and to
focus computational resources where necessary. Like
SINDA, full access is provided in logic and in spreadsheet
relationships not only to the basic modeling parameters
(dimensions, properties, loss factors, etc.), but also to
derived or abstract solution parameters (e.g., the exponent
on flow rate of the friction coefficient), and to underlying
correlations for heat transfer, pressure drop, etc.

Although the user can build models of custom parts and
control systems, prepackaged tools are provided for model-
ing common components such as pipes, pumps, valves, fil-
ters, accumulators, etc. Table 1 presents the overall
organization of SINDA/FLUINT modeling tools.

Single- or two-phase flow can be modeled either for pure
components (e.g., steam and water), for nonvolatile/non-
condensible mixtures (e.g., air and oil), and for condensi-
ble/volatile mixtures (e.g., air and oil and steam and water).
Gases can dissolve into or evolve from the liquid phases
according to saturation relationships and finite rate mass
transfer. Up to 26 nonreacting substances can be mixed
within each fluid submodel, and up to 25 fluid submodels
can be used.

Two-phase flow is by default homogeneous (uniform veloc-
ity: equal liquid and gas velocities) and in phasic equilib-
rium (perfectly mixed: equal temperatures and pressures
between phases). However, it is a simple matter to elect
the prediction of flow regimes, to model slip flow (unequal
liquid and gas velocities), to model phasic nonequilibrium in
quasi-stagnant volumes and within duct flows, and to
model nonequilibrium expansions in valves, orifices, and
venturis.

Unique features such as time- and direction-varying body
forces and capillary device models are important to the
aerospace industry. Because they are unique, such tools
have found uses in nonaerospace applications such as
modeling rotating machinery.

BUILT-IN SPREADSHEET

A built-in spreadsheet enables the user to define custom
(and perhaps interrelated) variables (Figure 2) call regis-
ters. The user can also define complex self-resolving inter-
relationships between inputs, and also between inputs and
outputs. This spreadsheet allows rapid and consistent
model changes, minimizes the need for user logic, and
makes parametric and sensitivity studies trivially easy to
perform.

The ability to create a SINDA/FLUINT model whose net-
work parameters and logic are completely controlled by a
few centralized registers enables high-level modules to be
added. One of these high-level modules is the focus of this
paper, but to fully explain it, another high-level module
must first be introduced.

THE SOLVER

The Solver was the first top-level design module in SINDA/
FLUINT. It was released in 1997 as part of Version 4.0.

The Solver is a fully featured nonlinear programming sys-
tem that can be used for a variety of purposes:

1. Goal Seeking: the ability to solve for an input value given
a desired response (output value). When used in this
mode, the Solver eliminates the need to write iteration
logic. For example, the user might wish to know what
coolant pump flow rate results in an electronics
temperature of 20°C. Or, the user may wish to find the
conductivity of a plate or fin required to achieve a heat
rejection efficiency of 95%.

2. Optimization (design synthesis): the ability to use
SINDA/FLUINT to help size or select design parameters.
The user defines which parameters are to be sized or

Figure 2: Part of the Built-in Spreadsheet: User-defined Registers
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selected along with an objective (“What makes one
design better than another?”) and possibly some
constraints (“What limits render a particular design
viable or useless?”). 

3. Test Correlation (calibration): the ability to adjust the
model (not the design) until best-estimate values for
uncertain parameters are generated. The user defines
which parameters are uncertain, and provides test data
to match against. Many correlation methods are
available along with various data handling and
comparison utilities: automated test data correlation is
currently the primary use of the Solver module.

In all of the above cases, the user defines an evaluation
procedure, or an arbitrarily complex series of SINDA/FLU-
INT solutions that tell the Solver how a particular design
(for optimization) or model (for correlation) stacks up
against the goals and requirements. Frequently, this proce-
dure is no more complicated than a single steady state
solution, but it can use any solutions or utilities available in
SINDA/FLUINT to perform the task. In essence, using the
Solver is like tasking a traditional SINDA/FLUINT model to
run itself repeatedly until it achieves some user-defined
objective (Figure 3).

Further description on the Solver is available in Reference
2. Knowledge of this module is a prerequisite for the subse-
quent discussion on Robust Design. However, a few key
points need to be made before leaving this topic.

Without the high-level modules, SINDA/FLUINT is used in
a traditional point-design fashion: given a specific and
deterministic design and a fixed environment and usage
scenario, steady-state and/or transient simulations are run
to determine how the design performed. This method is not
a natural way of performing common engineering tasks.
Rather, it is readily available because it is what is “easily”
achieved using numerical solutions. Because this type of
software is all that has been available, a generation of engi-
neers has been trained in these point-design evaluation

methods, forgetting perhaps what the original intent of
using them was: to produce good designs, and not just to
evaluate point designs.

The Solver module offers a revolution in SINDA/FLUINT
usage because it represents an automation of the design
process itself, and not an automation of a subprocess:
point-design evaluation. Reliability Engineering offers a
similar revolution because it permits many point-designs to
be evaluated at a higher level. Combining the Solver and
Reliability Engineering yields Robust Design: factoring reli-
ability into the automated process of design synthesis itself,
and thereby producing a design quantitatively balances risk
and cost.

ACCESSIBILITY

Concurrent developments have made advanced design
features in SINDA/FLUINT more accessible. C&R’s
SinapsPlus® is a complete nongeometric (circuit sketch-
pad) pre- and postprocessor for SINDA/FLUINT. C&R’s
Thermal Desktop® (with the optional RadCAD® radiation
analyzer) is a geometric (CAD/FEM/FDM) interface that
brings traditional thermal modeling practices into a concur-
rent engineering environment. A freely distributed plotting
program is also available: EZ-XY™ .

RANDOM VARIABLES AND THEIR DISTRIBUTIONS

To use the Reliability Engineering module in SINDA/FLU-
INT, the user starts by identifying which parameters
(dimensions, properties, boundary conditions, etc.) are
uncertain. These random variables will be allowed to vary
over a prescribed range, and any one value of such a ran-
dom variable has a given probability of occurrence, at least
in comparison to other values. This variation is called a
probability distribution.

Once a parametric model is built using registers, a subset
of these variables are identified as random. The user must
then describe the distribution function of each random vari-
able using one of three methods described next.

UNIFORM DISTRIBUTIONS

The simplest type of distri-
bution is a uniform one: the
random variable may
assume any value with
equal probability between a
lower limit and an upper
limit, as shown at the right.

This is an important class of distributions because it repre-
sents an easy transition from the current margin-based
approach of worst-case high and low values. The margin-
based approach to handling uncertainty is excessively con-
servative, corresponding to two delta (spike) distribution
functions at the upper and lower limits, whereas the uni-

Evaluation Procedure (user provided)

The SolverGiven these values of design variables,
perform SINDA/FLUINT analyses
or other calculations to determine:
 - the value of the objective
 - the values of any constraints (if any)

New values of design variables

Done

current objective

current optimization constraints

Initial values of 
design variables

Figure 3: “The Solver:” Optimization 
and Test Data Correlation Module

variable value

pr
ob

ab
ili

ty
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form distribution acknowledges that values in between are
at least as likely to occur as the extremes. Unlike the mar-
gin-based approach to uncertainty, the Reliability Engineer-
ing approach makes no presumptions about which
combinations of upper and lower limits yield problematic
performance. Nonetheless, the uniform distribution is very
simplistic: in most distributions values near the extremes
are much less likely to occur than values near the middle.

NORMAL DISTRIBUTIONS

The most common type of
nontrivial distribution is the
normal or Gaussian distribu-
tion. It is a symmetric distri-
bution that can be
completely described by a
mean value and a standard
deviation. Many times, an
engineer will know the nomi-
nal value of a parameter along with an upper and/or lower
limit. Frequently these upper and lower limits correspond to
a known number of standard deviations (usually about
three) off the mean.

ARBITRARY DISTRIBUTIONS

Sometimes, a normal (Gaus-
sian) distribution is appropri-
ate, but a theoretical range
between negative and posi-
tive infinity is nonphysical or
would cause numerical prob-
lems: a truncated normal dis-
tribution is required (shown
at right

Another possibility is a trian-
gular (witch’s hat) distribu-
tion, useful when all that is
known is a most likely value
plus a lower and upper
bound (shown at right).

In fact, there are many types
of distributions available (e.g., log normal, Weibull, Chi-
square, etc.), each suited for a different purpose. It is also
possible that a distribution function is produced from test or
manufacturing data or from a previous analysis.

To support any such distribution, SINDA/FLUINT accepts a
user-supplied table (array) of value versus probability. Any
number of points can be used to define the distribution
function. SINDA/FLUINT itself can be used to generate the
function for use in a future run using Fortran-style calcula-
tions.

Table 1: SINDA/FLUINT Hierachy of Modeling Options

Thermal/Fluid Models

Registers, Expressions, and Spreadsheet Relationships

Concurrently Executed User Logic

Thermal Submodels
Nodes

Diffusion (finite capacitance)
Temperature-varying
Time-varying

Arithmetic (massless: instantaneous) 
Boundary (constant temp.)
Heater (constant temp., returns power)

Conductors
Linear (conduction, advection)

Temperature-varying
Time-varying

Radiation
Temperature-varying
Time-varying

Sources
Temperature-varying
Time-varying

Fluid Submodels
Lumps

Tanks (finite volume)
Twinned tanks (nonequilibrium modeling)

Junctions (zero volume: instantaneous)
Plena (constant temperature, pressure)

Paths
Tubes (finite inertia)

twinned tubes (slip flow)
Connectors (zero inertia: instantaneous)

short tubes (STUBEs)
twinned STUBEs (slip flow)

valves
check valves, control valves
pressure regulating valves

K-factor losses, bidirectional or not
pumps, fixed or variable speed
constant mass or volumetric flow rate
capillary elements (CAPILs)

Ties (heat transfer)
user-input conductance
program-calculation (convection) conductance

Duct macros (subdivided pipelines)
Capillary evaporator-pumps (CAPPMP macros)
Ifaces (control volume interfaces), with or without inertia

flat (zero pressure difference)
offset (finite pressure difference)
spring (i.e., bellows, etc.)
spherical bubble
wick (liquid-vapor interface in porous structure)

Fties (fluid-to-fluid ties)
axial in a duct
user-input conductance
constant heat rate

Auxiliary Utilities
choked flow detection and modeling
waterhammer and acoustic wave modeling
compressors

Solutions
Steady-state
Transient
Goal Seeking
Design Optimization
Test Data Correlation
Reliability Estimation
Robust Design

variable value

pr
ob

ab
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ty

mean

std. dev.

variable value
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variable value
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RELIABILITY CONSTRAINTS (FAILURE LIMITS)

“Reliability” is the probability that a design will not exceed
limits defining failure. For example, a design might be con-
sidered a failure if a critical component exceeded an upper
or lower bound on a temperature, if a heater switched on
and off excessively, if a pressure exceeded 25% of the
burst pressure, etc. There may be many such failure limits.

A list of responses of interest to the designer (e.g., the tem-
perature of the critical component) can be created as well
as upper and/or lower limits on those responses (the failure
limits). Collectively, these are referred to as reliability con-
straints. One such reliability constraint might appear as fol-
lows:

Tmin <= battery.T100 <= Tmax

meaning that a failure will be assumed to exist if the tem-
perature of node 100 in submodel “battery” goes below
Tmin or above Tmax.

While the program must know what responses are desired
and what the limits are on those responses in order to cal-
culate reliability, such foresight is helpful but strictly not
required. A user might forget to define any responses, or
may indicate a response of interest without applying any
limits to it.

In other words, the user might decide after having made a
run to impose a new limit, or to investigate a new response.
Such hindsight is afforded by expansions to postprocessing
tools such as EZ-XY.

RELIABILITY ESTIMATION METHODS

SINDA/FLUINT offers three very different statistical analy-
sis routines. These routines all perturb random variables
according to their specified distributions, execute the evalu-
ation procedure provided by the user (perhaps just a single
steady state solution), and monitor reliability constraints (if
any) to produce statistics regarding those responses,
including the probability of a successful design. Figure 4
indicates this top-level data flow for the Reliability Engi-
neering module.

However, the methods used by each of the three routines
are intentionally very different, providing the user with a
wide range of options. These statistical analysis routines
are described next. Table 3 is a summary of the options
available.

MONTE CARLO SAMPLING

The simplest approach is that taken by the SAMPLE rou-
tine: a Monte Carlo method in which values of random vari-
ables are selected randomly according to their probability
distribution functions. As an example, for a uniform distribu-
tion any value within the valid range is selected using a uni-
form random number generator. For normal distributions,

random values are selected, but values near the center
(the mean) will be generated more frequently than those at
the extremes.

The Monte Carlo approach requires many samples (on the
order of 1000: 100 to 10,000) and is therefore expensive.
However, it yields the most information. Furthermore, the
accuracy of the estimation can be controlled at least rela-
tively if not absolutely: the SAMPLE routine detects conver-
gence as defined by negligible change in the selected
responses and their associated limits (i.e., the reliability
constraints) between any two consecutive samples.

Monte Carlo Sampling provides two methods of predicting
reliability. The first is a simple tally of the number of times a
failure limit was not exceeded divided by the total number
of samples. A similar method is used to predict overall reli-
ability:* the percent of all sampled cases that did not
exceed any limits. (In the limit of a single constraint with
only an upper or only a lower limit, the overall reliability is
the same as the reliability for that constraint.)

Table 3: Comparison of Reliability Estimation Routines

Routine SAMPLE DSAMPLE RELEST
Method Monte Carlo 

sampling
Descriptive 
sampling

Gradient method

Speed Slow Intermediate Fast

Convergence 
Detected?

Yes No No

Fixed Execu-
tion Cost?

No Yes Yes

Overall 
Reliability?

Yes Yes No

Cumulative? Yes Somewhat No

Applicability? Unlimited Unlimited Limited. Assumes:
- Gaussian variables
- Linear responses
- Continuous responses
- Fixed failure limits

* This method only works if all the reliability constraints 
are independent (in series).

Evaluation Procedure (user provided)

SAMPLE,Given these values of design variables,
perform SINDA/FLUINT analyses
or other calculations to determine:
 - the values of any constraints (if any)

New values of random variables

current values of reliability constraints

DSAMPLE,
RELEST

Reliability Calc.
(RELEST only)

Done

Convergence?
(SAMPLE only)

Figure 4: Flow Chart for Reliability Prediction Methods
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A second method is to accumulate statistics (mean and
standard deviation) about every indicated response, and
then to assume a normal (Gaussian) distribution for that
response. The probability of exceeding any limit can then
be calculated using the assumed profile.

DESCRIPTIVE SAMPLING

A faster alternative to Monte Carlo sampling is descriptive
sampling, which is used in the DSAMPLE routine. This
approach has a known cost: the user specifies the number
of samples to be made (based on what they can afford).
This number becomes the resolution with which the distri-
butions in the random variables are subdivided.

For example, if 100 samples
are to be used, each input pro-
file will be divided into 100
regions of equal probability.
For uniform distributions, one
hundred equal regions will be
used. For normal distributions,
the region near the mean will
be more finely subdivided than
the extremes such that each
region is equally probably and
therefore contains the same
area (integral of probability
over the random variable val-
ues: the cumulative distribution function). This subdivision
is illustrated at the right using five subdivisions.

Once the distributions of the random variables have been
subdivided, only one value from each subdivision (the cen-
ter of the corresponding region in the cumulative distribu-
tion function) is sampled, since each of these values is as
probable as any of the others. There is still randomness
involved for more than one random variable: each cell,
while sampled only once, is selected at random. For exam-
ple, the 5th cell of variable #1 might be combined with the
88th cell of variable #2 in one run, but the 5th cell of variable
#1 might be combined with the 42nd cell of variable #2 in a
second run.

For the same number of samples, descriptive sampling
yields more accurate results than Monte Carlo sampling.
Typically, descriptive sampling takes only 10 to 20% as
many samples as does the Monte Carlo method does to
achieve the same accuracy. However, Monte Carlo sam-
pling retains certain advantages, the most important of
which is a measure of confidence that enough samples
have been taken for the given problem. In other words,
there is no convergence test possible in descriptive sam-
pling. Furthermore, Monte Carlo sampling is more readily
cumulative (repeated runs can be combined for more accu-
racy than can repeated runs of descriptive sampling), and it
can yield a more accurate prediction of the overall reliability
than can descriptive sampling.

GRADIENT METHOD

A method for estimating reliability is available that is even
faster than DSAMPLE, but has even more limitations:
RELEST. This technique is not a sampling technique at all.
Rather, it estimates reliability by measuring gradients in the
responses with respect to the random variables, and by
assuming (but not requiring) that all distributions (both input
and response) are normal (Gaussian). It further assumes
that the mean of the responses can be predicted using the
mean values of the random variables, and that response
variations from that point are linear with respect to changes
in inputs.

RELEST requires only N+1 evaluations, where N is the
number of random variables. This is often an order of mag-
nitude smaller than what DSAMPLE requires, which is itself
often an order of magnitude smaller than will SAMPLE
requires: RELEST is comparatively cheap.

The first evaluation uses the mean values of random vari-
ables, and assumes that the resulting responses are the
means of those functions. The next (and final) N evalua-
tions perturb each random variable (in input order) such
that the gradients of each response with respect to each
input variable can be estimated using finite differences.
RELEST then assumes a first order Taylor series of vari-
ance (the square of standard deviation) can be applied to
estimate the variance (and therefore standard deviation) of
each response given the variance of each random variable,
whether those variables are normal or not. Now the code
has enough information to predict reliabilities: it has an esti-
mate for the mean and standard deviation of each
response, and can therefore predict the likelihood that a
response will assume any given value.

RELEST cannot predict overall reliability much less the tal-
lied estimate of reliability that a sampling routine can, and
should be used with caution in cases with nonlinear
responses and non-normal random variables. It also can-
not handle variable failure limits. Furthermore, unlike sam-
pling techniques, the accuracy of RELEST is not
cumulative: repeated calls do not affect the accuracy of the
results. However, because it is so inexpensive, RELEST is
often plays an important role in Robust Resign (described
later).

DATABASE AND POSTPROCESSING

In important part of the Reliability Engineering module is
the database that can be created to store the samples or
gradient perturbations made in the previously described
routines.

One purpose of creating such a database is to be able to
accumulate results in subsequent runs. For example, it
may be desired to add 1000 more Monte Carlo samples to
the samples taken in a previous run, in order to add to the
accuracy of the predictions.
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A second purpose of creating the databases is to be able to
visualize the resulting response distributions by plotting his-
tograms, such as the two EZ-XY histograms displayed in
Figure 5. The user can also produce scatter plots to see
how any two parameters are related to each other.

However, the most important use of the database is to be
able to apply hindsight while postprocessing: to be able to
define new responses of interest, or new limits to previ-
ously defined responses. Generating the samples can be
an expensive proposition when using sampling methods,
and so storing a database is very important in case failure
thresholds change or are redefined, or simply if the user
forgot to define a reliability constraint in the first place.

A BRIEF EXAMPLE

Consider a metal bar that is heated on one end and which
radiates to deep space on the other end, and is otherwise
insulated. The length and thickness of the bar are known,
as are the material properties. However, the width of the
bar, the power applied, and the emissivity of the exposed
(radiating) surface are less certain. The emissivity can
assume any value from 0.08 to 0.12. The width of the bar is
nominally 1 inch, and is expected to have a Gaussian distri-
bution with a standard deviation of 0.01 inch. Similarly, the
input power is nominally 10W but has a Gaussian distribu-
tion with a standard deviation of 0.5W.

What are the chances that the temperature of the heated
side of the bar will not exceed 500°F under steady condi-
tions?

A one-dimensional SINDA model of the bar is built using
registers to define key dimensions and properties. Three of
these registers are defined as random variables: WIDE,
POWER, and EMIS corresponding to the above three
uncertain terms. The definition of these registers, their
identification as random variables, and the specification of
their distributions is as follows:

HEADER REGISTER DATA
...
EMIS            = 0.1
WIDE            = 1.0
POWER           = 10.0

HEADER RANDOM DATA
EMIS, UNIFORM, 0.08, 0.12
WIDE, NORMAL, SD = 0.01
POWER, NORMAL, SD = 0.5

The heated side of the bar corresponds to node #1 in sub-
model “sub1,” and therefore the reliability constraint is sim-
ply defined as:

HEADER RELCONSTRAINT DATA
SUB1.T1 <= 500.0

The evaluation procedure is simply a steady state solution:

HEADER RELPROCEDURE
CALL STEADY

Now one of more of the reliability routines (SAMPLE,
DSAMPLE, RELEST) can be called from the main solution
block of SINDA/FLUINT (called “OPERATIONS”), along
with calls for output and/or database write operations. The
following calls for descriptive sampling (100 samples by
default) plus tabulated output of the predicted reliability:

CALL DSAMPLE
CALL RCSTTAB

Details of the SINDA model are omitted for brevity, but the
above sample illustrates how easily Reliability Engineering
can be applied to an existing model that uses registers.
Older models not originally built using registers and expres-
sions can be easily retrofitted, adding multiplying factors
that are initially equal to unity.

In the above case, due to the presence of a non-normal
random variable and the highly non-linear behavior of this
radiation dominated problem, the RELEST routine can only
be used as a first approximation. Such a fast but approxi-
mate calculation is ideal if reliability is estimated as a part
of the evaluation procedure for a design optimization, as
described next.

Figure 5: Sample Postprocessing: EX-ZY Histograms
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ROBUST DESIGN

Assume that a thermal control system is being designed for
a component whose temperature cannot exceed 40°C. Tra-
ditionally, the user would iteratively develop such a design,
and then stack up worst case conditions to assure that the
temperature would never exceed some lower threshold
(perhaps 30°C) allowing for safety factors or margin, which
hopefully have some basis in experience if not test data.

If the degree of uncertainty in the inputs can be quantified,
then the probability of exceeding 30°C or 40°C could be
determined using the Reliability Engineering module
described above.

Perhaps the Solver optimization module could be used to
find a deterministic (nonrandom) design that will just meet
the 30°C threshold. Any variation in parameters will then
result in a reliability of roughly 50% relative to 30°C, with a
higher probability of not exceeding 40°C. If the chances of
exceeding 40°C are too great, the design must be regener-
ated using a greater safety margin: applying perhaps a
25°C limit during the redesign process (whether manual or
automated). In other words, even with automated design
synthesis using the Solver optimization module, the margin
is itself unknown and must be estimated iteratively.

Robust Design means being able to factor the ultimate reli-
ability into the design process: using reliability as a basis
for synthesizing the design in the first place, and avoiding
high-level design iterations.

The Reliability Engineering module described in this paper
enables a user to estimate the reliability of a point design
based on uncertainties in the dimensions, properties,
boundary conditions, etc. The Solver optimization module
enables a user to size or select dimensions, properties, etc.
such that mass is minimized, or such that performance is
maximized, etc. This section lists ways in which these two
modules can be combined to yield even more powerful
design tools.

Listed below are a few possible combinations of these
modules:

1. a design can be selected using the Solver, and then (in
the same or later run) the reliability of that design can be
estimated

2. the reliability of a design can be used as an objective
(“maximize reliability” or “minimize the chances of
failure”)

3. the reliability of a design can be used as an optimization
constraint (“find the minimum mass design that achieves
a reliability of at least 99%”)

4. the range or variance of a random variable can be used
as a design variable (“what variation can be tolerated:
how tight must tolerances be?”)

In the first case, the Solver and Reliability Engineering
modules are not combined so much as executed in series.
Often, the random variable is expressed as the uncertainty
in a parameter rather than the parameter itself. For exam-
ple, a pipe diameter might be defined as a mean value plus
a random value (whose mean is zero):

DH = Dmean + Drandom

The mean diameter (Dmean) might be selected using the
optimizer (with Drandom equal to zero), and then the reli-
ability of the design might be evaluated about that mean
using Drandom as a random variable.

However, the real power of Robust Design is reflected by
the second, third, and fourth cases listed above: reliability-
based optimization to replace a margin or safety factor
approach.

EXAMPLE: TRADITIONAL APPROACH

Assume a computer chip fails when the semiconductor
junction temperature exceeds 125°C: its qualification tem-
perature. During acceptance testing of any particular unit,
the junction temperature is stressed to 115°C, and it is
therefore intended that this temperature (115°C) should
never be exceeded during the life of the electronics: a 10°C
margin exists as a minimum.

During the product design the junction temperature is not
allowed to exceed 104°C, adding another 11°C of margin
(using U.S. military standard MIL-STD-1540c for passive
thermal designs as an example) to cover uncertainties in
inputs (performance, environments) as well as uncertain-
ties or inaccuracies in the model itself.

Worst case stack-ups are produced of hot and cold cases
(environments, dissipations, etc.), beginning-of life (unde-
graded) properties versus end-of-life (degraded) proper-
ties, etc. and the designs are adjusted until the predictions
show 21°C margin from the upper and lower bounds of
qualification temperatures, and 11°C margin from the
acceptance temperatures.*

The margins are shown graphically at the top of Figure 6
for the upper end of the temperature limits.

EXPANDING THE TRADITIONAL APPROACH

Optimization and Reliability Engineering can be used to
enhance the current design process.

* This description oversimplifies for clarity. Generally, an 
even greater uncertainty margin (17°C) is recom-
mended during preliminary design, and 11°C is 
applied to a model that has been calibrated (per-
haps using the Solver module) to test data to 
within about 3°C.
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Most designs are produced iteratively and manually. The
Solver optimization module can be tasked to synthesize a
design automatically or at least semi-automatically. In the
above example, this would be performed by applying the
limits as optimization constraint (similar to but independent
from reliability constraints):

Tjunc <= 125.0-10.0-11.0

Whether the design has been produced manually or the
Solver has been used, the reliability of the design can still
be estimated using the Reliability Engineering module. In
this case, a reliability constraint of

Tjunc <= 125.0-10.0

is applied as a failure limit. In other words, the reliability is
defined as the chances of not exceeding the acceptance
temperatures. In essence, the validity of the 11°C margin
(which was used to generate the design) is being tested, as
shown in Figure 6. The 11°C margin will either be too cau-
tious, resulting in costly over-design, or will be inadequate,
resulting in risky under-design.

The amount of over- or under-design can only be quantita-
tively measured using reliability estimation methods. Either
way, a truly optimal design will achieve exactly the required
reliability for the thermal subsystem and thus be neither
over- nor under-designed. Any excesses in either direc-
tion are justification for revisiting the design itself.

REPLACING THE TRADITIONAL APPROACH

Revisiting a design is costly: it would have been far better
to have achieved the target reliability in the first place using
Robust Design methods.

To use Robust Design methods, the reliability constraint is
still applied

Tjunc <= 125.0-10.0

but the optimization constraint is replaced by:

0.997 <= RelAct

where “0.997” is the required thermal subsystem reliability,
and “RelAct” is the actual reliability predicted for the current
design using the Reliability Engineering module. In other
words, reliability estimation becomes part of the design
evaluation process.

As was noted above, meeting a reliability requirement is
but one possible option. Other options include maximizing
reliability (making RelAct the objective) while meeting some
other mass or power budget. Also, presuming the engineer
had some control on tolerancing (machining, subassembly
acceptance criteria, etc.), Robust Design can also be used
to calculate what range of uncertainties is acceptable.

MULTIDISCIPLINARY DESIGN GENERATION AND 
EVALUATION

Extending the previous example, note that even the 125°C
limit levied upon the thermal designer is itself uncertain: it
contains margins and/or a hidden reliability predictions. A
truly optimal multidisciplinary design would factor in the reli-
ability of the chip directly, rather than indirectly as an inflex-
ible limit imposed upon the thermal designer. Even the final
10°C margin would be subject to replacement by statistical
methods.

Commercial tools exist such as Engineous’ iSIGHT®
(www.engineous.com) that can perform optimization, reli-
ability estimation, and robust design generation at a higher
level than what can be accomplished within a thermal/fluid
analyzer such as SINDA/FLUINT. Codes such as iSIGHT
enable the inclusion of almost any point-design simulation
tool within any arbitrarily complex design evaluation pro-
cess. SINDA/FLUINT is being expanded to provide direct
links to iSIGHT to encourage such high-level integration.

Temperature
Design

Acceptance Qualification(“predict”)

10°C
margin

11°C
uncertainty

Over-designed

Under-designed

Robust Design

Figure 6: Traditional vs. Robust Design
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RELEVANT THERMAL DESKTOP EXPANSIONS

C&R’s Thermal Desktop® has been expanded to be para-
metric, allowing geometry, orbits, optical and material prop-
erties, etc. to be defined using expressions and symbols
(analogous to SINDA/FLUINT registers).

More importantly, a direct link is being established between
SINDA/FLUINT and Thermal Desktop: Thermal Desktop
calculations can be invoked dynamically from within
SINDA/FLUINT during processor executions. This provides
the ability to include variations in radiation and geometric
conductance/capacitance results while using the optimiza-
tion, correlation, and reliability engineering modules. For
this reason, interfaces to these modules are currently being
added to Thermal Desktop. The traditional separation of
thermal math models (TMM) and geometric math models
(GMM) is being eliminated.

CONCLUSIONS

The ability to determine the amount of over- or under-
design present in a thermal/fluid system has been added to
SINDA/FLUINT, permitting uncertainties to be treated sta-
tistically in addition to traditional deterministic methods.
More importantly, the potential to eliminate over-design due
to stack-ups of margins, safety factors, and tolerances has
been added, taking into account uncertainties early in the
design process by designing for reliability.

Good software automates existing processes, reducing the
effort required to create new products. Great software revo-
lutionizes the processes, empowering the creation of better
products. The addition of the Reliability Engineering mod-
ule to SINDA/FLUINT, especially combined with previously
existing modules such as optimization, attempts to assure
SINDA/FLUINT’s place in the latter category.
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