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Abstract
Thermal modeling is fraught with uncertainties such as

film coefficients, contact resistances, dissipation rates, and
effective conductances and capacitances of complex
components. Adjusting the values of uncertainties in a
thermal/fluid model to achieve a better fit with test data is a
necessary step; this procedure is even codified into military
standards for electronic equipment design, for example.

Nonetheless, such “correlation” or “calibration” activities
are typically done haphazardly and without any mathematical
rigor, and are often impeded rather than aided by software.

This paper shows how readily available nonlinear
programming (NLP) techniques that were developed for
optimization problems have been successfully used to
automate this critical but laborious calibration task. This paper
briefly introduces NLP concepts, and then demonstrates their
application both to a simplified curve-fitting exercise as well
as a real case: a transient with a serpentine condenser plate.
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automation.

Uncertainties in Thermal/Fluid Analysis
Variation can be classified in three categories:

1. uncertainties in performance parameters: contact
resistances, film coefficients, dissipation levels,
effective thermal capacitances and conductances of
complex components, etc.

2. environmental or usage uncertainties: ambient
temperature and humidity, duty cycle, etc., as well
as degradations over the maintenance life of the
product

3. unit-to-unit (manufacturing) variations: bonding,
fan performance, filter resistance, etc.

Each category of variation is traditionally handled using
different approaches. Because of differences between
organizations, products, etc., the following attempt to describe
“typical” approaches is necessarily a generalization.

Reference 1 describes the use of statistical design
techniques for treating certain classes of uncertainties. This
paper describes complementary techniques for reducing
design uncertainty by calibrating some or all of the underlying
thermal/fluid model to any available test data, perhaps by
exploiting tests performed on previous versions of the vehicle
or product. Such a calibrated model then can be used with
greater confidence to predict design performance in untested
or even untestable conditions. Model calibration is a necessary
step in many industries and organizations, with both the model
and its calibration requiring independent reviews.

Traditional Calibration “Techniques”
Values for performance uncertainties can be calculated

from limited test data. Unfortunately, because of the system-
level interactions of radiation and fluid flow, it rarely makes
sense to perform thermal tests at low levels of assembly, and
this means that the thermal/fluid model to be calibrated
contains several (perhaps 5 to 30) simultaneous unknowns.
Also, some unknowns (e.g., film coefficients) will vary over a
range of test conditions (e.g., fan speeds).

When faced with many uncertainties and copious test data,
engineers most often address each uncertainty serially: the
parameter judged to be the most influential is corrected first,
then left at a fixed value. The second parameter is
subsequently adjusted, ad nauseam. Most analysis software
makes it difficult to make sweeping changes in input values,
even between runs. Therefore, because of the labor and tedium
involved, rarely is the above cycle repeated: the initial value
found for the first parameter is usually not rechecked once
values for all of the other parameters have been determined.

In other words, current methods used for calibrating (or
“correlating”) models are primitive: repetitive analysis runs
are made varying one parameter at a time. Worse, selection of
best-fit values is most often based on a visual comparison of
plots of test data versus predictions. The current “algorithm”
for model calibration is then:

1. Choose the parameter with the most uncertainty
and/or the parameter judged to have the greatest
importance on the results.

2. Create a plot of the results based on a guessed value
of the uncertain parameter, and make repeated runs
until a better fit is visually evident. If allowed by the
thermal/fluid analysis software, make a parametric
sweep of the uncertain parameter and select the value
that results in the best fit.

3. Choose the next most important/uncertain parameter
on the list, and go to step 2. Continue through the list
of uncertainties until either the desired match (e.g.,
error threshold) is achieved, or until the parameter list
has been exhausted.

As will be described next, a superior calibration results by
varying all parameters simultaneously and by using more
mathematical rigor when making comparisons between test
data and predictions. An important benefit of this new
approach is that the laborious methods that were described in
this section can be replaced by an automated search for the
best fit.

Nonlinear Programming: Generalized Tasking
Nonlinear programming (NLP) techniques attempt to find

the maxima and minima of an objective function in N



dimensions, while obeying arbitrarily complex constraints.
Many algorithms exist for solving such problems, as do
several off-the-shelf software packages. For example, the
Solver module in Microsoft’s Excel  spreadsheet software is
representative of this class of algorithm.

Formal mathematical descriptions of NLP techniques are
not necessary to understand their importance to thermal/fluid
model calibration and other automation tasks. Rather, it is
important to understand the four parts of a optimization task,
as listed below (and as depicted in Figure 1):

1. The objective function: an arbitrarily complex figure
of merit to be maximized or minimized.

2. The design variables: the parameters whose values at
the optimum point need to be determined.

3. Constraints: arbitrarily complex relationships that
distinguish feasible design points (sets of values of
design variables) from useless ones.

4. Evaluation procedures: the generation of current
values of the objective function and the constraint
functions given a current set of design values.

Figure 1: Four Concepts in Optimization

Many engineers have seen these algorithms applied to
design optimization: the generation or synthesis of a design
that minimizes weight or cost, or that maximizes performance.
However, the math underlying NLP techniques can be applied
to a wide variety of tasks: it is a generic means of defining a
complex task or search.

For example, NLP algorithms can be applied to generating
worst-case design scenarios, which represents yet another
means of dealing with uncertainties in thermal/fluid design. In
this case:

1. The objective function is the temperature of some
component to be maximized (“find the hot case”) or
minimized (“find the cold case”).

2. The design variables are the uncertainties. Especially
common are environmental uncertainties such as
ambient temperature, humidity, pressure (or altitude
for avionics applications), and orientation (for aircraft
and spacecraft applications).

3. The evaluation procedure might consist of a steady-
state thermal/fluid analysis or a transient scenario that

yields the temperature of critical components, given
specific values of uncertainties (“design variables”) as
inputs.

Note that constraints are optional.

Applying NLP to Model Calibration Problems
In this paper, NLP techniques are described in relationship

to model calibration tasks. One example of such a usage
results in the following interpretations (Figure 2):

1. The objective function is the difference between tests
and predictions, to be minimized. (There are many
ways to define such a function, as will be described
later.)

2. The design variables are the uncertainties: the bond
resistance, the filter blockage or permeability, the fan
efficiency, the film coefficient, etc.

3. The evaluation procedure might consist of a steady-
state thermal/fluid analysis or a transient scenario that
yields the temperature (or pressure etc.) of measured
points, given specific values of uncertainties (“design
variables”) as inputs.

Figure 2: NLP Concepts Applied to Calibration

Again, constraints are optional. (Upper and lower limits on
design variables are important, but are not true mathematical
constraints and are often referred to as “side constraints.”)

The reader will note that the above examples leave plenty
of room for interpretation. This is an important feature: the
engineer retains complete control over what is uncertain (and
by how much), how to define a good fit, and how to minimize
the computations required to find that fit. For example, it is
possible to calibrate to temperature derivatives in time instead
of temperatures, or to find the least cubes fit instead of the
least squares fit, or to add weighting factors to critical
measurements etc.

However, it is not the purpose of this paper to exhaustively
list all of these possibilities. Instead, the basic concepts will be
clarified via specific examples with the understanding that
many, many more customizations are possible.

Example: Simple Curve Fitting



To illustrate the application of optimization concepts to
calibration of models, an industry- and model-independent
demonstration of a polynomial curve fit will be used.

Assume that 13 data points (depicted in Figure 3) are to be
fitted to a simple third order polynomial:

Yp = A + BX + CX2 + DX3

Figure 3: “Test Data” to be Curve Fit

For this example, the above equation is the “model” and
the “uncertainties” are the four variables A, B, C, and D. To
cast this into an optimization format requires that decisions be
made regarding how to define a good fit. For example, using a
root sum of squares (RSS) as the objective to be minimized is
equivalent to a least squares curve fit. For each of the thirteen
points:

OBJECT = SQRT[ ∑ i=1,13(Yt,i -Yp,i )2 ]

Yt,i is the test data and Yp,i is the prediction at the ith point
based on the “design variables” A, B, C, and D. OBJECT is
the current value of the objective function, which is to be
minimized. No constraints are needed, although upper and/or
lower limits could be imposed on the design variables. (No
such limits are applied in this simple example.)

The “evaluation procedure” consists simply of calculating
the thirteen values of Yp,i  given current values of A, B, C, and
D, then computing the above objective.

The results of this exercise are shown in Figure 4.
Figure 4 also depicts the results of an alternative definition

of a good fit: minimized maximum error (“Minimax”). The
Minimax method often produces better fits to data, but is more
sensitive to noise in the test data and often slower to solve.
Also, for most NLP algorithms the simple replacement of an
objective function with OBJECT = |Yt,i -Yp,i |max is
unacceptable because it introduces discontinuities.

Figure 4: RSS and Minimax Curve Fits

To avoid discontinuities, a fifth design variable “E” is
introduced and set equal to the objective function to be
minimized (i.e., “OBJECT = E”). Then thirteen constraints are
generated, one for each (ith) data point/prediction pair:

-E < (Yt,i -Yp.i ) < E

More details on the uses of Minimax methods, along with
examples, are presented in Reference 2 (see Section 5 and
Sample Problem E). The point of introducing this alternative
here is to illustrate the flexibility available to the engineer in
defining the calibration problem. Other possible objectives
include minimizing cubic or quartic errors, standard
deviations, and weighted error (i.e., make calibration at some
points more important than at others).

Of course, the usefulness of the resulting calibrated model
(in this case, the third order polynomial with four fitted values
of the coefficients) is dependent on the model itself. A fourth
order polynomial would have generated a better fit, as would
many other functions. More critically, a poorly chosen
predictive formula would always result in erroneous
predictions of test data, no matter how well it was calibrated
or fit. This is analogous to calibrating an inappropriate or
error-ridden thermal/fluid model: calibration can’t fix a bad
model. This will be discussed further in a later section.

Example: Condenser Transient
This section demonstrates the application of automated

model calibration techniques to an actual test of an ammonia
condenser.

A thick aluminum plate (65kg) is bonded to a serpentine
duct, as depicted in Figure 5 (the uneven spacing is
intentional: the sketch is approximately to scale). The duct is
not plain piping, but rather internally grooved to enhance
condensation: it is a trapezoidally axially grooved (TAG)
aluminum heat pipe extrusion, although it was not used as a
heat pipe in this test.

The plate is attached to a cold sink via a malleable,
conductive pad, but this pathway does not provide sufficient
rejection for the heat load that will be supplied. Instead, the
plate is initially cold and warms up over the course of a 42
minute transient event.



Figure 5: Geometry for Condenser Plate Transient

Initially, the entire system is quiescent at 6.6°C: the
ammonia within the condenser is stagnant liquid. At time zero,
saturated ammonia vapor at 29°C is supplied upstream at a
rate corresponding to a heat input of 510W. As the plate
warms, the condensation point progresses through the plate
until it has reached the exit and the plate can no longer
provide complete condensation.

Data at three points along the condenser was available as
functions of time.

Assuming that the 29°C saturation temperature and 510W
evaporative input are both correct (they will be selected as
uncertainties later), a simple SINDA/FLUINT (Ref 2)
thermal/fluid model of the system was generated. Vendor-
supplied data was used for the conductive pad, and the
condensing film coefficient in the grooved tubing was
estimated using a correlation generated for heat pipes.

The test data (black/solid) and the initial predictions
(blue/dashed) for the transient event are provided as Figure 6.
The top curves correspond to a point near the condenser inlet,
whereas the bottom curves correspond to a point near the
outlet.

The first step towards calibrating the model to the test data
is to identify the key uncertainties. Based on engineering
judgement, four quantities are identified along with limits on
their reasonable range of variation:

1. The power input into the vaporizer. Although
measured to be 510W, a measurement error of 5% is
allowed. Also, heat leaks may cause less than the full
amount of heat to flow into ammonia. The power

input is therefore allowed to vary from 90% to 105%
of the nominal value.

2. The saturation temperature of the ammonia system,
which was measured in the test to be 29°C at a
reservoir. A 0.5°C uncertainty is assigned to this
value, plus an additional 0.5°C on the upper end
because the vapor in the reservoir can compress
during start-up (and this effect might not be
evidenced in the thermocouple). Thus, the saturation
temperature is allowed to range from 28.5°C to 31°C.

3. The thermal resistance of the conductive pad is
suspect since vendor data was used and might
therefore be optimistic. Also, unit-to-unit variation
exists due to clamp pressures and hysteresis (from
previous clamp/release cycles). A large uncertainty is
therefore allowed in this parameter: from 50% to
150% of the nominal conductance value. This
correction factor is assumed constant throughout the
pad.

4. The condensation coefficient. The film coefficient
correlation used in the condenser may not be
appropriate for forced flow. A single correction
factor on the resulting coefficients is therefore
applied throughout the condenser, with values of
between 75% and 125% of nominal assumed.

Figure 6: Test Data vs. Pre-calibration Predictions

The above uncertain parameters are applied as “design
variables” to the NLP solver, with limits applied as side
constraints. The evaluation procedure is to generate the
transient temperature profiles using current values of the four
parameters, and compare these with the test data to generate
the objective function value.

As with the previous curve fitting example, two
definitiions of the objective function are used: a “least
squares” method (RMS or root-mean-square, which is
equivalent to RSS since they have the same minumum) and
“Minimax” (minimized maximum error) method. The results,
generated using the built-in NLP “Solver” module in
SINDA/FLUINT, are shown in Figure 7.

As can be seen in Figure 7, both methods return about the
same predictions, resulting in very good agreement with the
test data. The RMS method takes 37 evaluations (transient



analyses) while the Minimax method requires almost twice as
many. The RMS method returns a calibrated model with an
RMS temperature error of about 1°C, while the Minimax
method returns a maximum error of about 2°C.

However, the resulting values of the four uncertainties are
not the same for both traces: multiple solutions exist. The
RMS method resulted in 105% of the nominal input power
(e.g., the limit) while the Minimax method required only
102%. Whenever such a limit is reached, then its selection
must be questioned because the limit is influencing the
answers. In other words, could a larger range of variation have
been possible?

Both methods agreed that the saturation temperature was
too low, but the RMS method returned a value of 30.2°C while
the Minimax method required a much smaller departure of
29.2°C.

Figure 7: Test Data vs. Calibrated Predictions

However, the largest source of disagreement were the
correction factors for the conductive pad and condensation
heat transfer. The RMS method made hardly any change to the
condensation heat transfer coefficient (101% of nominal)
while the Minimax method lowered this factor to its lower
limit (75% of nominal, again hitting a limit). Conversely, the
RMS method dropped the pad conductance to 84% of the
nominal value, while the Minimax method retained 95% of
that conductance. At first, these disagreements might seem
contradictory until one realizes that both factors are applied in
parallel to the same heat flows: a reduction in one term results
in about the same temperature predictions as does a reduction
in the other term. The RMS method reduced one parameter
and left the other alone, while the Minimax method reduced
the complementary parameter, such that they both yeilded
approximately the same temperature predictions (as evident in
Fiture 7).

Also, both methods struggle to fit to the last (coldest) trace
near the outlet towards the end of the transient. Although it is
likely that this discrepancy is due to the simplicity of the
model employed, it is also possible that some heat transfer
pathway or physicial process was neglected. For example,
spatial variations in the conductive pad performance are
common but were neglected in the underlying model. This

could have been accounted in the calibration procedure, but at
the cost of a much greater number of uncertain parameters.
For example, one could apply one adjustment factor for each
of the 9 regions of the plate. Such an agumentation of
uncertain parameters (from 4 to 13) would require even more
transient evaluations (from 40 to about 200 in this case).

These difficulties have been elaborated in this example
because they illustrate generalized points to be made in the
next section. However, they should not detract from the fact
that an automatically calibrated model resulted in a fit that
was not only better than military standards, but was also better
than was achieved using traditional (sequential, visual)
techniques such as the labor-intensive ones that were
described earlier.

Challenges for the Engineer
As was noted above, calibration can’t fix a bad model.

Despite all of the benefits of automated thermal/fluid model
calibration techniques, analyst responsibility is not eliminated
so much as shifted. The analyst retains the responsibility of
building a sensible and complete model, with appropriate
attention to the physics of each problem. In fact, because the
model will be run parametrically many times, it might even
have to be more robust and faster to execute than was
tolerable using prior manual calibration techniques.
Fortunately, these model preparations do not represent a
departure from previous techniques or experience.

Challenges that might be new to the engineer using
automated calibration techniques are listed below.

First, the choice of which parameters to declare as
uncertain, and within which bounds, is critical. Failure to
include a critical parameter or sufficient variation in a
parameter can yield a false fit, yet too many parameters with
bounds that are too liberal is inefficient.

Second, as was noted above, many different definitions of
“best fit” can be mathematically specified. For example, a
weighted least-squares is possible assigning more value to
good correlation at critical components, or at critical
simulation times, etc.

Third, although it is theoretically possible just to list all
test cases with corresponding model runs as an “evaluation
procedure” and activate all possible uncertain variables at
once, huge efficiencies can be gained by a little preplanning
and preparation of subset calibrations. For example, it is
common practice to first calibrate thermal
resistances/conductances to steady state test results, and then
proceed to calibrating effective capacitances to transient test
results.

Fourth, the engineer must accept or reject the resulting
calibrated model, checking to see if limits in uncertainties
have been reached. The engineer should consider improving
the model or expanding the set of uncertain parameters as
needed to achieve a reasonable fit.

This verification stage also includes searching for multiple
solutions. The easiest way to check for the existence of
multiple solutions is to rerun the problem using different
initial values of the uncertain parameters, and see if either the
same fit was achieved or if an equally good fit results using
different final values of the uncertainies.



Challenges for Analysis Software
How does a thermal design engineer exploit the

availability of these advanced techniques using their favorite
thermal/fluid analyzer? Model calibration techniques involve a
higher level of analysis beyond a traditional “point design
simulation.” Most engineering analysis software is set up to
solve a deterministic set of equations, either steady state or
transient, given a fixed set of inputs. In other words, these
programs provide predictions of how a single point design
performs under specific environments. Automated model
calibration, on the other hand, requires either using or creating
a software tool that can perform multiple iterative point design
evaluations. This section describes three approaches toward
achieving such a capability.

The first option uses an in-house development approach.
First, engineers can write their own optimization engine or
purchase one commercially. Then, a means of executing the
thermal/fluid analyzer iteratively must be achieved, perhaps
via an API (application programmer interface) if available, or
perhaps simply by modifying and rewriting text input files and
reading text output files. A script can be generated to
iteratively run the thermal/fluid analyzer, driving the uncertain
inputs with the optimization engine such that a best match is
achieved between simulation predictions and test data. This
option is cost effective only if software development labor is
inexpensive or if an organization is large enough to recoup the
investment of the development of a general-purpose utility.
Otherwise, considerable effort will be spent rewriting the
software every time a new calibration task arises.

As the second option, engineers can acquire a general
purpose MDO (multidisciplinary optimization) environment.
Examples of such software include Engineous’ iSIGHT®,
Phoenix Integration’s ModelCenter®, MSC Software’s
RDCS, Synapse’ Pointer®, VR&D’s VisualDOC®, LMS’
Optimus®, and Samtech’s BossQuattro. To varying degrees,
these programs enable the engineer to set up their favorite
thermal/fluid simulation code as part of the evaluation of any
one set of unknown or random inputs. The advantages are that
these thermal/fluid simulation codes need not “know” that
they are being used in such an iterative fashion: little to no
modifications of the simulation codes and models are
required. This approach also has the advantage of providing
an infrastructure that reduces the time to create a new
calibration or reliability estimation task. However,
disadvantages of the MDO approach include the cost of
acquiring and learning such codes, and the relatively slow
speeds resulting from inefficiencies in running the simulation
code in such a disconnected fashion. Nonetheless, such an
approach is clearly better than the current “manual” and
“serial” method of calibrating models.

A third choice is to use a thermal/fluid analyzer that
already has these advanced features built-in. This avoids the
overhead associated with the first choice, and the additional
costs associated with the second choice, and is much faster to
execute than either of those choices for various reasons.1
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 In addition to avoiding interprocess communication and overhead
associated with starting and restarting programs, a built-in capability can

However, choices are limited for two reasons. First and most
important, few thermal/fluid analysts are aware of such
capabilities, and hence they more typically demand additional
detailed phenomenological modeling power rather than more
help with design and calibration tasks. Forgivably, commercial
vendors listen to them, and the demand for high-level decision
support tools is therefore slack. Second, even after analysts
discover these gains in productivity and begin to demand
them, software suppliers will find it difficult to accommodate
these requests without significant changes in their software.
To accommodate high-level analyses such as model
calibration and reliability estimation, the software must first
become fully parametric instead of expecting single-valued
(“hard-wired”) design and environment specifications. There
is hope, however: structural analysis and CAD software have
increasingly emphasized such capabilities in their new releases
over the last five years. It is hoped that thermal/fluid analysis
tools can follow these examples and catch up once the user
community has been educated and the demand for new
capabilities is established.

Conclusions
Removal or reduction of uncertainty is an important if not

required step in most thermal/fluid analyses. However,
existing techniques are labor-intensive and faulty since they
are rarely rigorous. This paper has shown how existing models
built using existing software can be automatically rerun using
NLP technology tasked with seeking a best fit. In software
designed to include these capabilities as “native,” application
of automated calibration techniques is becoming
commonplace.

The resulting techniques are not magic and still require a
good model and an experienced engineer making sound
decisions. However, a significant improvement in both
productivity and predictability has been demonstrated and is
in current active use.
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exploit the advantage that previous steady state solutions (which usually
comprise the majority of calibration and reliability assessment tasks) in the
search were close to the current solution, and can jump quickly to
incremental answers.


