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ABSTRACT

The major influence on the reliability of electronics is 
temperature, yet thermal/fluid modeling is plagued with 
uncertainties and unknowns. Nonetheless, if appropriate values 
of these unknown parameters are available for any specific 
electronics package, then its temperature response can be 
accurately predicted using modern thermal/fluid analysis tools.

Traditionally, uncertainties are dealt with by a combination of 
testing, safety factors or margins, and worst-case design 
scenarios. Analyses are performed iteratively in a repetitive 
“point design evaluation” mode. Computer-based design 
simulation tools have emphasized increasing detail and fidelity 
to physical phenomena, seemingly ignoring the fact that the 
inputs to these simulations are highly uncertain.

This paper describes both current and future methods of 
dealing with uncertainties in thermal engineering. It introduces 
advanced tools and alternative methodologies that can automate 
not only the quantification of reliability, but can also help 
synthesize designs on the basis of reliability. It advocates using 
rapid gains in computer speed not to increase the degree of 
detail in a model, but to help the engineer find a robust design 
by automating high-level design tasks.

INTRODUCTION

The sources of uncertainty are numerous for thermal/fluid 
analyses of electronic equipment. Contact conductances (e.g., 
between circuit board and chassis, or heat sink mounts) are 
notoriously difficult to predict ahead of time, and exhibit wide 
as-built variations. Other examples of uncertain parameters 

include film coefficients (especially for natural convection), 
component dissipation levels and/or duty cycles, heat sink by-
pass ratios, filter resistances and blockage, environmental 
conditions, usage scenarios, and unit-to-unit variations in fan 
performance. 

Traditional Treatment of Uncertainty and Variation

Variation can be classified in three categories:

1. uncertainties in performance parameters (contact 
conductances, film coefficients, dissipation levels, 
effective thermal capacitances and conductances of 
complex parts, etc.)

2. environmental or usage uncertainties (ambient
temperature and humidity, duty cycle, etc.) as well as
degradations over the maintenance life of the product

3. unit-to-unit (manufacturing) variations (bonding, fan
performance, filter resistance, etc.)

Each type of variation is traditionally handled using different 
approaches. Because of differences between organizations, 
products, etc., the following attempt to describe “typical” 
approaches is necessarily a generalization.

During preliminary design phases, minima and maxima are 
established for uncertain performance parameters. These limits 
are based on experience and perhaps tests of prior similar 
designs. For the most part, environmental and usage 
uncertainties are similarly imposed as design requirements: 
minimum and maximum expected levels of ambient 
temperature, humidity, etc. Worst case hot and cold scenarios 
are then stacked up to assure that the electronics do not exceed 
operating temperature specifications, or that condensation of 
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humid air is precluded, etc. For example, a worst-case hot 
environment is often combined with a the lowest estimate of 
bond conductance and the highest estimate of component 
dissipation rates.

Subsequent tests might reduce at least the performance 
uncertainties if not the variations in usage and ambient 
environment, but more often than not the results of these tests 
are applied not to the current unit (which has already been 
designed), but to the design and analysis of future equipment. 
Values for performance uncertainties are calculated from 
limited test data, primarily for use in calibrating a thermal/fluid 
model of the equipment. Unfortunately, because of the system-
level interactions of radiation and fluid flow, it rarely makes 
sense to perform thermal tests at low levels of assembly, and 
this means that the thermal/fluid model to be calibrated contains 
several (perhaps 5 to 30) simultaneous unknowns. Also, some 
unknowns (e.g., film coefficients) will vary over a range of test 
conditions (e.g., fan speeds). Most often, multiple unknowns are 
addressed serially: the parameter judged to be the most 
influential is corrected first, then fixed while the second 
parameter is subsequently adjusted, ad nauseam.

Unfortunately, even if all uncertainty could be removed in 
performance parameters such as contact conductances and film 
coefficients, variations and uncertainties remain in 
environment, usage, manufacturing, and installation. Often, 
these uncertainties are treated using design margins, safety 
factors, or other conservatisms based on experience or tradition. 
For example, a common upper limit for silicon-based transistors 
is 125°C. This temperature represents the “knee in the curve” 
past which failure becomes increasingly likely. To overcome 
environmental uncertainties as well as unit-to-unit variations, a 
margin is applied: the operational temperature limits might be 
set to 115°C, for example, allowing 10°C margin. Ideally, such 
margins are based on tests and analysis of the specific unit. 
Realistically, however, it is based on company or customer 
standards: generalized traditions that may or may not be 
appropriate for the current package. To overcome uncertainties 
in performance parameters and in the analysis itself, additional 
margin (perhaps 5 to 15°C) is typically applied during 
preliminary (pre-test) design phases. Again, these margins are 
based on standards or traditions, and not on the particulars of the 
current application.

The Need for a New Method

Overdesign is expensive. Underdesign is both risky and 
expensive (damaged reputation). Different disciplines (thermal, 
electrical, structural, etc.) communicate worst-case derived 
requirements to each other rather than attempting to couple the 
design analyses. For example, dissipation levels in batteries are 
difficult to quantify, so extremes are used as design cases. This 
leads to designs that are heavier and more costly than they need 
to be, and in some cases does not even result in a safer or more 

reliable design if a more risky technology had to be selected in 
order to meet strenuous derived requirements.

Even within the single discipline of thermal management, 
overdesign exists due to stack-up of margins and worst-case 
scenarios until the design case is unrealistic and will likely 
never occur. Additional margin is then added to cover 
uncertainties in thermal modeling, environment, and 
component sizing. Only when meeting an extreme stack-up of 
margins and uncertainties becomes impossible does a 
renegotiation of adequate margin begin, and such renegotiations 
are seldom based on any mathematical rigor or true knowledge 
of the underlying risk.

AUTOMATED MODEL CALIBRATION TECHNIQUES

As was noted above, if there were no uncertainties in input 
performance parameters, then temperature responses can be 
accurately predicted using modern thermal/fluid analysis tools. 
This fact is often exploited to calibrate thermal/fluid models: to 
reduce or eliminate uncertainties by backing out the values of 
those uncertainties that generate the best comparison with test 
data. In many ways, thermal/fluid analyses become elaborate 
extrapolations of known (tested) points.

As was also noted above, however, the means for calibrating 
(or “correlating”) these models is primitive: repetitive analysis 
runs made varying one parameter at a time. A better calibration 
would result by varying all parameters simultaneously. 
Furthermore, the basis of comparing test data with predictions is 
rarely based on any mathematical procedure; often, a visual 
comparison is made between plotted data and predictions.

Automated techniques are available for finding the best-fit 
estimates of performance uncertainties, although they are as yet 
rarely employed. These automated techniques not only 
eliminate a laborious and commonly disliked task, they also get 
better results than the traditional manual, visual methods. 
Therefore it is not because of user hesitation that these 
techniques are not more commonly employed. Rather, it is 
because these techniques are not well known and because few 
thermal/fluid modeling tools have these techniques built-in and 
software packages external to the modeling tools are 
cumbersome, slow, and expensive. These deployment issues 
will be addressed at the end of this paper. For now, the basic 
techniques will be described.

Calibration as an Optimization Process

The task of an automatic calibration algorithm is to find the 
values of N uncertain parameters (“calibration variables”) such 
that the difference between test data and simulation predictions 
is minimized: find the best-fit values of those parameters. The 
key to automating this task is to recognize that this is the same 
algorithm as that followed by a generalized optimization 
algorithm (also referred to as nonlinear programming, or NLP). 
To use such an algorithm for calibration, one needs to simply 
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redefine nomenclature, replacing “design variables” with 
“calibration variables” and making the “objective to minimize” 
a measure of the error between predictions and test data. In 
other words, a wealth of previous research and software 
solutions is already available that can be readily exploited.

Figure 1 illustrates how an optimization algorithm applies to a 
calibration task. The algorithm seeks the values of calibration 
variables (two are depicted in Figure 1 for visualization 
purposes) such that the objective function (O), being a measure 
of the difference between test (T) and predictions (P), is 
minimized. There are many ways to describe such an objective 
function, with the simplest being a least-squares fit over all 
comparison points (i):

With this method, there are usually no constraints (such as the 
one depicted in Figure 1).

In the case of clean (noise-free) data, a better fit (albeit more 
costly and more difficult to set up1) can be found using 
minimized maximum error, or “MINIMAX” techniques:

Note that a key feature of using an optimization algorithm is 
that all calibration parameters are changed simultaneously, 
rather than the traditional serial approach, which corresponds to 
a series of optimizations each applied to a single parameter. 
Working in the N-dimensional space of all N calibration 
parameters at once is not only more efficient, it yields a better 
correlation.

1. Such approaches are heavily constrained owing to the non straightfor-
ward approach required to avoid introduction of discontinuities in the objective 
function, as discussed in Cullimore, 2001.
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Figure 1.   Calibration as an Optimization (Hill 
Climbing or Valley Descending) Process
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Figure 2 shows how a traditional point-design simulation can 
be executed iteratively to implement such an optimization-
based approach. Typically, between 30 and 300 executions of 
the simulation are required to perform most calibration tasks. 
Depending on the implementation (see last section in this 
paper), the cost of such runs can be substantially less than this 
number (30 to 300) times the cost of a single stand-alone 
simulation run. In any case, fewer runs are required than in a 
traditional “manual, serial, visual” technique, and all of them 
are automated.

Figure 3 illustrates the application of such automated 
calibration tools to the case of a transient in a two-phase heat 
exchanger. While the details of this comparison are beyond the 
scope of this paper, note that four correlation parameters were 
chosen, and a maximum error of less than 3°C was achieved 
with 42 iterations of the transient simulation (42 transient runs, 
each using a different set of values for the four calibration 
parameters).

Problems and Responsibilities

Despite all of the benefits of automated thermal/fluid model 
calibration techniques, analyst responsibility is not eliminated 
so much as shifted.

First, the choice of which parameters to declare as uncertain, 
and within which bounds, is critical. Failure to include a critical 
parameter or sufficient variation in a parameter can yield a false 
fit, yet too many parameters with bounds that are too liberal is 
inefficient.

Second, as was noted above, many different definitions of 
“best fit” can be mathematically specified. For example, a 
weighted least-squares is possible assigning more value to good 
correlation at critical components, or at critical simulation 
times, etc.

Figure 2.   Thermal/fluid Point Simulations 
Executed as an Iterative Subprocess of Calibration

Point Evaluation Procedure

OptimizationGiven these values of calibration variables,
perform thermal/fluid analyses
or other calculations to determine:
 - the value of the objective (goodness of fit)
 - the values of any constraints (if any)

New values of calibration variables (unknowns)

Done

current objective

current constraints (if any)

Initial values of 
calibration variables

Engine
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Third, unlike linear algebra it is possible to have more 
unknowns (calibration variables) than equations (data points) 
and still yield a useful solution. However, it is increasingly 
possible in those cases (few or inappropriate test data points 
compared to a large number of uncertainties declared) to yield 
multiple solutions: multiple local minima in the objective 
function. Therefore, the user retains the responsibility of 
assuring that the test data contains enough information to “pin 
down” the values of all uncertainties applied. For example, no 
amount of steady-state test data will yield a value for the 
effective thermal mass of some component: at least one 
transient temperature trace is required.

With practice, however engineers quickly gain intuition 
regarding the selection of uncertain parameters, their ranges, 
and appropriate procedures and subprocedures for extracting 
their values from test data using automated techniques.

Figure 3.   Example of Automated Calibration of 
Four Uncertainties in a Heat Exchanger Transient

Before (best guess, vendor data)

After (calibrated to test)

Implementing Automated Calibration Techniques

Recognizing the fact that model calibration is a task that can 
be posed to a general optimization engine is only half of the 
solution. The other half is to have these capabilities work 
conveniently with the thermal/fluid analyzer that is used to 
generate the performance predictions. Because the 
implementation of automated calibration techniques parallels 
the implementation of reliability analysis techniques that will be 
described next, the discussion of such deployment issues is 
deferred until the end of the paper.

RELIABILITY OF THE THERMAL DESIGN

Of course, determining unknowns by test can never 
completely eliminate all sources of uncertainty. Uncertainties 
remain in manufacturing and installation tolerancing, 
environmental and usage variation, degradations, etc.

As an alternative to stacking up worst-case scenarios and 
using rigid margins or safety factors, the engineer could 
combine these factors statistically to yield information about the 
degree of confidence (“reliability”) in a particular point design. 
At the very least, the appropriateness of the traditional margins 
and methods can be assessed. In other words, the engineer could 
generate not just a single performance predictions but also a 
distribution of performance predictions with associated 
probabilities of occurrence, as shown graphically in Figure 4.

Random Variables and Their Distributions

To perform a reliability assessment, the analyst starts by 
identifying which parameters (dimensions, properties, boundary 
conditions, etc.) are uncertain. These random variables will be 
allowed to vary over a prescribed range, and any one value of 
such a random variable has a given probability of occurrence, at 
least in comparison to other values. This variation is called a 
probability distribution.

The simplest type of distribution is a uniform one: the random 
variable may assume any value with equal probability between 
a lower limit and an upper limit (depicted at the left of Figure 
5). This is an important class of distributions because it 
represents an easy transition from the current margin-based 
approach of worst-case high and low values. The margin-based 
approach to handling uncertainty is excessively conservative, 
corresponding to two delta (spike) distribution functions at the 
upper and lower limits, whereas the uniform distribution 
acknowledges that values in between are at least as likely to 
occur as the extremes. Nonetheless, the uniform distribution is 
very simplistic: in most distributions values near the extremes 
are much less likely to occur than values near the middle.

The most common type of nontrivial distribution is the 
normal or Gaussian distribution. It is a symmetric distribution 
that can be completely described by a mean value and a 
standard deviation. Many times, an engineer will know the 
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Figure 4.   Assessing the Appropriateness of 
Derived Requirements and Margins
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nominal value of a parameter along with an upper and/or lower 
limit. Frequently these upper and lower limits correspond to a 
known number of standard deviations (usually two or three) off 
the mean. Sometimes, a Gaussian distribution is appropriate, but 
a theoretical range between negative and positive infinity is 
nonphysical or would cause numerical problems: a truncated 
normal distribution is required. Another possibility is a 
triangular (witch’s hat) distribution, useful when all that is 
known is a most likely value plus a lower and upper bound.

In fact, there are many types of distributions possible (e.g., 
log normal, Weibull, Chi-square, exponential, etc.), each suited 
for a different purpose. It even possible that a distribution 
function is produced from test or manufacturing data or from a 
previous analysis. Therefore, the ability to treat arbitrary 
probability distribution functions is important.

Reliability Estimation Methods

Given a thermal/fluid model with random variables and 
defined failure limits, there are several means of estimating the 
chances that these limits will not be exceeded. For example, the 
following three choices employ three very different statistical 
analysis techniques:

1. Monte Carlo Sampling. This method selects the values of 
uncertain variables randomly according to their 
probability distribution functions. As an example, for a 
uniform distribution any value within the valid range is 
selected using a uniform random number generator. For 
normal distributions, random values are selected, but 
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Figure 5.   Various Types of 
Distributions for Random Variables
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values near the center (the mean) will be generated more 
frequently than those at the extremes. The Monte Carlo 
approach requires many samples (on the order of 1000 
analyses) and is therefore expensive. However, it yields 
the most information, and its accuracy can be easily 
extended with cumulative runs.

2. Descriptive Sampling. Unlike Monte Carlo methods, this
approach has a known cost: the user specifies the number
of samples to be made (based on what they can afford).
This number becomes the resolution with which the
distributions in the random variables are subdivided. For
example, if the number of samples selected is 100, then
each input profile will be divided into 100 regions of equal
probability. Once the distributions of the random variables
have been subdivided, only one value from each
subdivision (the center of the corresponding region in the
cumulative distribution function) is sampled, since each of
these values is as probable as any of the others. Although
five to ten times faster than Monte Carlo sampling for the
same accuracy, drawbacks to this approach include lack of
accuracy estimation or confidence: have enough samples
been taken? Also, accuracy is only marginally improved
via cumulative runs.

3. Gradient Method. This method is very fast, requiring only
N+1 “samples”, where N is the number of random
variables. In fact, this technique is not a sampling
technique at all. Rather, it estimates reliability by
measuring gradients in the responses with respect to the
random variables, and by assuming (but not requiring) that
all distributions (both input and response) are Gaussian. It
further assumes that the mean of the responses can be
predicted using the mean values of the random variables,
and that response variations from that point are linear with
respect to changes in inputs. This method cannot estimate
overall reliability, and cannot handle variable failure
limits (reliability constraints). The accuracy is not
cumulative. However, because it is so inexpensive, it often
plays an important role in reliability-based design
synthesis.

A comparison of these three techniques is made in Table 1. 
Experience has shown that Monte Carlo Sampling can only be 
afforded for the simplest problems, and that Descriptive 
Sampling is more commonly used. Because of its speed, the 
Gradient Method is very useful for advanced applications such 
as reliability-based optimization: the synthesis of a design based 
on reliability considerations, or the calculation of tolerable 
variation in a design (selection of tolerances).

Figure 6 illustrates the iterative nature of the sampling or 
gradient perturbations. The parallels with Figure 2 are 
intentional and important with respect to implementation. In 
both cases, what is traditionally performed by thermal/fluid 
analysts, a “point design simulation” of a device under steady-

state and/or transient conditions, becomes merely a subprocess 
of a larger analysis whether performing optimization (sizing, 
selection), calibration, or reliability estimation.

Figure 7 presents a sample of postprocessing of reliability 
estimations: histograms, or relative probability of occurrence as 
a function of a parameter under study (e.g., a failure limit such 
as peak operating temperature). Because of the number of 
samples required for non gradient-based techniques, keeping the 
results is critical such that new statistics can be performed on 
old data. For example, it is possible to use hindsight in the 
postprocessing phase and ask new questions, such as revising 
failure limits (e.g., “What are the chances that the temperature 
will exceed 50°C instead of 60°C?”).

Table 1: Comparison of Three
Reliability Estimation Techniques

Method Monte Carlo
sampling

Descriptive
sampling

Gradient method

Speed Slow (~1000 
analyses)

Intermediate 
(~100 analyses)

Fast
(~10 analyses)

Convergence
Detected?

Yes No No

Fixed Execu-
tion Cost?

No Yes Yes

Overall
Reliability?

Yes Yes No

Cumulative? Yes Somewhat No
Applicability Unlimited Unlimited Limited. Assumes:

- Gaussian variables
- Continuous, linear 
responses
- Fixed failure limits

Point Design Evaluation Procedure

ReliabilityGiven these values of random variables,
perform thermal/fluid analyses
or other calculations to determine
the values of failure limits (if any)

New values of random variables

current values of failure limits

Estimation
Driver

Reliability Calculation
(Gradient Meth. only)

Done

Convergence?
(MC Sample only)

Figure 6.   Thermal/fluid Point Design Simulations 
Executed as an Iterative Subprocess of Reliability 
Estimation
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IMPLEMENTATION

How does a thermal design engineer exploit the availability of 
these advanced techniques using their favorite thermal/fluid 
analyzer? Comparing Figure 2 and Figure 6 shows that both 
model calibration techniques and reliability estimation 
techniques are related not only because both deal with 
uncertainty and variation, but because both involve a higher 
level of analysis beyond a traditional “point design simulation.” 
Most engineering analysis software is set up to solve a 
deterministic set of equations, either steady state or transient, 
given a fixed set of inputs. In other words, these programs 
provide predictions of how a single point design performs under 
specific environments. Model calibration and reliability 
estimation, therefore, can both be achieved by using or creating 
a software tool that can perform multiple iterative point design 
evaluations. This section describes three such approaches.

The first option uses an in-house development approach. 
First, engineers can write their own optimization engine or 
purchase one commercially. Reliability estimation “engines” 
are comparatively easy to write, but might still be purchased 
commercially. Then, a means of executing the thermal/fluid 
analyzer iteratively must then be achieved, perhaps via an API 

Figure 7.   Examples of Histograms used to 
Postprocess Reliability Studies

(application programmer interface) if available, or perhaps 
simply by modifying and rewriting text input files and reading 
text output files. A script can then be generated to iteratively run 
the thermal/fluid analyzer, either (1) driving the uncertain inputs 
with the optimization engine such that a best match is achieved 
between simulation predictions and test data or (2) perturbing 
the random variables and sampling outputs or measuring 
gradients for reliability estimation. This option is cost effective 
only if software development labor is inexpensive or if an 
organization is large enough to recoup the investment of the 
development of a general-purpose utility. Otherwise, 
considerable effort will be spent rewriting the software every 
time a new calibration task arises.

As the second option, engineers can acquire a general purpose 
MDO (multidisciplinary optimization) environment, most of 
which also feature statistical analysis tools. Examples of such 
software include Engineous’ iSIGHT®, Phoenix Integration’s 
ModelCenter®, MSC Software’s RDCS, Synapse’ Pointer®, 
VR&D’s VisualDOC®, and Samtech’s BossQuattro. To 
varying degrees, these programs enable the engineer to set up 
their favorite thermal/fluid simulation code as part of the 
evaluation of any one set of unknown or random inputs. The 
advantages are that these thermal/fluid simulation codes need 
not “know” that they are being used in such an iterative fashion: 
little to no modifications of the simulation codes and models are 
required. This approach also has the advantage of providing an 
infrastructure that reduces the time to create a new calibration or 
reliability estimation task. However, disadvantages of the MDO 
approach include the cost or acquiring and learning such codes, 
and the relatively slow speeds resulting from inefficiencies in 
running the simulation code in such a disconnected fashion. 
Nonetheless, such an approach is clearly better than the current 
“manual” and “serial” method of calibrating models. 

A third choice is to use a thermal/fluid analyzer that already 
has these advanced features built-in (Cullimore, 1998). This 
avoids the overhead associated with the first choice, and the 
additional costs associated with the second choice, and is much 
faster to execute than either of those choices for various 
reasons.2 However, choices are limited for two reasons. First 
and most important, few thermal/fluid analysts are aware of 
such capabilities, and hence they demand additional detailed 
phenomenological modeling power rather than more help with 
design and calibration tasks. Forgivably, commercial vendors 
listen to them, and the demand for high-level decision support 
tools is therefore slack. Second, once analysts discover these 
gains in productivity and different means of approaching 
uncertainties, sizing tasks, etc., software suppliers will find it 

2. In addition to avoiding interprocess communication and overhead 
associated with starting and restarting programs, a built-in capability can exploit 
the advantage that previous steady state solutions (which usually comprise the 
majority of calibration and reliability assessment tasks) in the search were close 
to the current solution, and can jump quickly to incremental answers.
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difficult to accommodate these requests without significant 
changes in their software. To accommodate high-level analyses 
such as model calibration and reliability estimation, the 
software must first become fully parametric instead of 
expecting single-valued (“hard-wired”) design and environment 
specifications. There is hope, however: structural analysis and 
CAD software have increasingly emphasized such capabilities 
in their new releases over the last five years. It is hoped that 
thermal/fluid analysis tools can follow these examples and catch 
up once the user community has been educated and the demand 
for new capabilities is established.

CONCLUSIONS

The uncertainties that abound in thermal/fluid modeling of 
electronics can be treated by a combination of calibration to 
available test, and to statistical evaluation of the influence of the 
remaining uncertainties. Automated techniques are available to 
assist in both tasks. Traditional steady state or transient “point 
design evaluation” analyses then become a subprocess of a 
larger system that provides decision support at a higher lever.
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